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Abstract. The existence of space-like solutions of infinite-component wave equations is not 
a ‘disease’ but a virtue. By comparing quantum electrodynamics with the infinite- 
component wave equations for bound electrons we show that the space-like solutions 
correspond to relativistic negative-energy solutions of the constituents of the composite 
system. Hence they have physical consequences in second-order processes such as the 
Compton effect and electromagnetic polarizabilities. Thus the assumption of the ‘No-Go’ 
theorem admitting only time-like solutions is too restrictive for a field theory with 
infinite-component equations. 

1. Introduction 

The realistic and successful infinite-component wave equations as applied in the past 
decade to a relativistic treatment of systems like the H atom or hadrons have, in 
addition to the positive-mass physical states, also space-like solutions. On the other 
hand Grodsky and Streater (1968), by requiring positive-mass solutions only (‘and 
obviously only time-like values can occur’), found the set of local field theories with 
infinite-component wave equations to be void. Subsequently attempts were made to 
construct wave equations without space-like solutions (Bacry and Chang 1973, Nambu 
1967, Fronsdal 1968), or to find the physical interpretation of the space-like solutions 
(Barut 1969, and references therein). Generally, the existence of space-like solutions is 
seen as a ‘disease’ and as a result the study of infinite-component wave equations and 
the related problem of saturation of current algebra relations by one-particle states 
have received a setback. In this study we show that the space-like solutions have a 
definite physical interpretation, they have experimentally demonstrable consequences and 
form an integral part of the theory. We do this by comparing quantum electrodynamics 
of bound states with the corresponding infinite-component wave equations. The 
space-like solutions are nothing but the negative-energy states of the bound electronS. 
As the negative-energy states of the free electron are re-interpreted in the hole theory 
as the positron, we have similarly to re-interpret the negative-energy solutions of the 
bound electron. Such states are actually used in problems involving bound electrons, 
e.g. Compton effect off a bound relativistic electron, or the polarizability of the 

t On leave of absence from the University of Colorado, Boulder, Colorado, USA. 
f Chang and O’Raifeartaigh (1968) point out in this connection that in the free quark model the total 
momentum of two non-interacting quarks is space-like if one of them has negative energy. 
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relativistic H atom. Infinite-component wave equations describe composite systems 
(Takabayashi 1965, Barut and Malin 1968, 1972). Although localizable asymptotic 
states have positive norm and mass, we show that the negative-normed solutions 
contribute to the second-order processes in the intermediate states. 

The relativistic H atom has been a guide and prototype in the use of infinite- 
component wave equations for hadrons. Therefore, the present results are also 
significant for and applicable to the calculation of hadron properties in second-order 
processes using such equations, such as Compton effect and electromagnetic 
polarizabilities (Barut and Nagel 1976) where the effect of the negative-energy 
solutions seems already to be seen experimentally. 

2. In quantum electrodynamics 

2.1. Free electrons 

We begin with a brief review of the situation in quantum electrodynamics. The 
existence of negative-energy solutions to the relativistic wave equation for the electron 
was a serious difficulty of the Dirac theory until the discovery of antimatter. When the 
Dirac field is quantized, the roles of the creation and annihilation operators for the 
negative-energy solution are interchanged, i.e. it is the absence of a negative-energy 
state that is associated with the positron. Equivalently, a negative-energy state is 
regarded as a positive-energy state moving backwards in time. In perturbation theory 
we must sum over a complete set of solutions in the intermediate states. Hence a 
second-order process, for example, is at first formally represented by the diagrams of 
figure l ( a ) .  However, the new interpretation of vacuum as the almost completely filled 
sea of negative-energy states changes the second diagram of figure l ( a )  as shown in 
figure l ( b ) .  

'I: 
Y 
A j/ Id 1 

Figure 1. On the interpretation of negative-energy solutions: -f-, positive-energy 
electron solutions; - - -3- - -, negative-energy electron solutions; S, positive- 
energy positron solutions; -, Feynmann propagator. In addition there are crossed 
photon diagrams in all cases. 
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Here the second diagram represents the excitation of a negative-energy state, giving 
a free positive-energy electron and a hole which is later filled by the incoming electron. 
Equivalently one pictures the negative-energy solution as a positive-energy solution 
but moving backwards in time. In the quantized Dirac field theory, the second diagram 
of figure l ( b )  is interpreted as the normal creation of an electron-positron pair (figure 
l ( c ) ) ,  which is the same in the compact Feynman theory as the simple covariant diagram 
of figure l ( d ) .  

figure l(a): 

The propagators corresponding to each part of the figure are: 

1 *$qXI)Q$J(X2) 
“ f  

figure l ( b ) :  

*“(Xl)qp(X2), t l >  f 2  
n+ 

figure l ( c ) :  same as figure 1(b) ,  except the negative-energy solutions are called 
antimatter solutions: 

- 1 K:+(xl)*::+(x2), tl < t2 
ne+ 

figure l ( d ) :  for free electrons, 

(-id+ m) A(xl - X Z ;  m’). 

The negative-energy solutions are an integral part of quantum electrodynamics. The 
Feynman propagator contains implicitly the negative-energy states pictured in figures 
l ( b )  and l(c). 

2.2. Bound electron 

We now go over to the composite relativistic systems and consider the bound electron in 
the case of the Dirac H atom. There are three types of solutions: bound, positive- 
energy continuum, and negative-energy continuum. The bound states are the usual 
discrete, localized wavefunctions. The positive-energy continuum states are just 
ionization states in an attractive potential. The negative-energy states have the same 
functional form that one obtains for the scattering of two particles of the same charge, 
i.e. repulsive-potential scattering states. Note that this agrees well with the interpreta- 
tion of the negative-energy states in terms of antiparticles. If a positron is created in the 
Coulomb field, it will be Coulomb scattered (figure 2). Thus the negative-energy 
solutions to the relativistic H problem take into account the process of pair production 
of one of the constituents, the electron. This is the key to the interpretation of 
space-like solutions in the case of infinite-component systems, which are composite 
systems like the H atom. 
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Figure 2. On the interpretation of space-like solutions. (In addition there are crossed 
photon diagrams.) 

2.3. Effect of negative-energy stares in low-energy properties of the system 

In addition to the production of antiparticles, the experimental consequences of 
negative-energy states can be seen in the low-energy properties of second-order 
processes. 

As a typical second-order process we consider the Compton scattering off a bound 
Dirac particle. The transition amplitude in second order is (as derived from Feynman 
rules) (Sakurai 1967, Akhiezer and Berestetski 1965): 

where use is made of the propagator for a bound electron (figure 2). The sum in (1) is 
over positive- and negative-energy states. It is interesting to see the effects of the 
negative-energy intermediate states even in the non-relativistic limit. For w << m and 
AE << m we can assume E, - -m, Ei - m, wi - 0 in the denominators of the negative- 
energy sum. Then (1) becomes: 

+sum over positive-energy virtual states. 
Using 

we convert the sum over negative-energy states in (2) into a sum over all states, and then 
use commutation relations of all y matrices to obtain 

e’ 
m = - (fief. ei(i) +sum over positive-energy virtual states. 

Thus even in the low-energy limit the negative-energy states contribute, giving the so 
called ‘seagull’ interaction. 

The seagull term arises in all theories with negative energies. This is because if there 
are negative-energy states in the theory, an external field can create particle- 
antiparticle pairs, and therefore the electromagnetic current and the particle field itself 
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are not independent of the external field. Since the interaction is of the formj,A@, any 
dependence of j ,  on A, leads to a quadratic term in A,, giving the seagull term (Jauch 
and Rohrlich 1955, chap. 14). 

For the Dirac H atom we have shown explicitly that the virtual transitions to 
negative-energy states reduce, in the non-relativistic limit, to the seagull term. It is in 
fact this term which gives the lowest-order contribution to the magnetic polarizability of 
the H atom. The result is (Van Vleck 1932) 

p = - ’  2 3 
2~ a , 

where a = l / a m  is the Bohr radius; p is negative indicating that the negative-energy 
states give rise to a diamagnetic effect. This is because the virtual production of 
electron-positron pairs implies a set of charges, and classically the magnetic polarizabil- 
ity of a charge cloud is negative. 

It is remarkable that a Hamiltonian linear in the momenta (e.g. Dirac atom) with 
minimal coupling and negative-energy states, gives rise to the same interaction (i.e. A 2 ) ,  

as a quadratic Hamiltonian, but with no negative-energy states. 

3. Infinite-component wave equations 

The infinite-component wave equations generalize a Schrodinger- or Dirac-type 
equation with a potential into a covariant form although the potential does not appear 
explicitly and has been eliminated in favour of an algebraic structure. Such equations 
should therefore be identified with a composite system with internal structure and not 
with an elementary particle. There is unfortunately no closed, exact passage from the 
general principles of quantum electrodynamics to the equations describing the bound 
states. Various approximations, assumptions and postulates have to be made to arrive 
from the general Bethe-Salpeter framework at a Dirac equation with a Coulomb 
potential, for example. The infinite-component wave equation is somewhere between 
the two. It describes the composite system completely covariantly and treats it as an 
elementary entity with internal structure. It is a dynamical equation derived by an 
inverse process, from the bound-state equation with potential to a relativistic equation, 
by using the underlying algebraic structure and spectrum of the problem. There are no 
problems with consistency and interpretation. However, its disadvantage lies in the fact 
that the relation of the coefficients of the equation to the masses of the constituents is 
not known exactly, except approximately in the case of the H atom. 

We shall therefore compare the unperturbed infinite-component wave equation to 
the Dirac equation with potential and develop a systematic perturbation theory when 
external electromagnetic interactions are included. 

3.1. Spectrum 

We now consider the infinite-component wave equation describing a bound relativistic 
particle. The equation is 

(J,Pc” + ps + y)*(P) = 0, (2) 
where J, = a J, + azPF + a3SP,, with ai, p, y = constants. Here r,, S are elements of 
the 0(4,2) Lie algebra in a specific representation (Jauch and Rohrlich 1955, chap. 
14). 
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The mass spectrum is obtained by diagonalizing (2)  in the rest frame: 

[ ( a 1 r o + a 2 ~ + ( Y 3 ~ ~ ) ~ + ~ ~ + y 1 ~ ( 0 )  =o. 
We find in general the existence of discrete, continuum, and also space-like states, 
the 'disease' of infinite-component theories. 

The discrete spectrum is given by 
2 1/2 

*) - a:- 2pa3 - 2 y ( a 2 / n 2 )  *{&a? -4pa3) - (4/n2)[&2~ + (d -a37) I) 
2(a:  +a;/n2)  (MJ, 1 - , 

(3) 
where n = $,;, 5 .  . . for fermion representations and n = 1 , 2 , 3  . . . for boson represen- 
tations. 

Lemma. The plus or minus solutions in (3) both exist if the condition 

A careful study of (2a )  leads to the following lemma. 

a:a2y + (azP - a 3 d 2  > 0 (4) 

holds. In that case the plus sign corresponds to positively-normed, and the negative sign 
to negatively-normed solutions. 

Wave equations for which (4) holds will be denoted type I. Type II wave equations 
for which (4) is not true, have either the plus or minus sign in (3), but not both. The 
norm is then either positive or negative, respectively. 

The continuum mass spectrum is given for both types I and I1 by 
2 1/2 a: - 2Pa3 i- 2'Y(a2/A '1 * {a?(a: -4Pa3) + (4/A '>[a ?a27 + (a2P - a 3 Y )  1) = 

2((~32 - a ; / A  2,  

( 5 )  
where (a2/a31 < / A  I <CO. The mass spectra for the two types are represented in figure 3. 
Type I solutions have two sets of discrete states and both the positive and negative 
continua have the same analytic character as in the case of the ionized H atom 
wavefunction, which corresponds to scattering of particles of different charge. 

Type I1 solutions have only one set of discrete solutions. The upper continuum states 
again correspond to ionization wavefunctions, but the lower continuum has the same 

I I1 

F@we 3. Mass spectra for type I and type I1 infinite-component wave equations. 
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analytic character as the scattering wavefunction of two particles of the same charge. 
We know that the relativistic H atom is well described by an infinite-component wave 
equation (see the reviews by Barut and Rasmussen 1973). 

Considering the boson representation and taking the parameters that correspond to 
the H atom, we see immediately that the H atom is of type 11. For a2<< 1 we get the 
usual discrete spectrum 

M,, = M ~  + me - (mecu2/2n2). (6) 

The continuum states have masses in the range 

(M, + me)’ S (Mr))’ < CO and --CO < (M:-’)’S (M,  - me)’. (7) 

This situation corresponds exactly to the spectrum in quantum electrodynamics: (M!i+))’ 
is the continuum (mass)’, and (M!!))2 corresponds to the scattering states of negative 
energy. The fact that space-like solutions with (&))’ = P,P” < 0 occur is conse- 
quently of no problem here. This is because of the fact that ( p ~ + p &  = P, can be 
space-like, even though both p1 and p2 are time-like. Here we show that the space-like 
solutions of the infinite-component wave equation for the relativistic H atom are 
associated with the negative-energy states of the Coulomb problem. 

The wave equation for the proton, in order to fit the observed form factors, must be 
of type I. This implies a different kind of constituent particle than in the H atom, which 
is not surprising. The main difference is that we have the existence of negative-norm 
discrete states-in the H atom this would have corresponded, if they existed at all, to a 
positron bound to a proton! The proton constituents must be of a strange form; for 
example, in the dyonium model they are magnetic charges in parity eigenstates (Barut 
1971): 

I&* 13). 
The interpretation of the space-like solutions of the proton is the same as before: 
production of particle-antiparticle pairs of constituents. The fact that no constituents 
have ever been seen is understood if the constituents interact so strongly that, at all 
energies so far obtainable, the produced pair immediately interact to form a pion. This 
idea is supported by the 0(4,2) spectra for the proton. Equation ( 5 )  gives M = 0.8 GeV 
for the highest space-like state of the proton, giving a threshold for importance of 
space-like states of 0-94-0.8 = 0-14 GeV, which is precisely the pion mass. Thus the 
effects of space-like states of the proton are to be seen in pion production. 

We have seen, for the Coulomb problem, that the negative-energy states contribute 
to low-energy characteristics such as the Thomson term and polarizabilities. In the 
infinite-component theory for the relativistic H atom, these same negative-energy 
states correspond to the space-like solutions. Thus we expect space-like states in 
infinite-component field theories to be physically evident in terms of low-energy 
properties. 

3.2. The role of space-like solutions 

To obtain the Compton amplitude for a particle in 0(4,2) theory, we first obtain the 
interaction terms by minimal coupling with the infinite-component wave equation (3). 
The result is: 

eJpAw + e 2 ( a 2  + a 3 S ) A , A p ,  
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where the second term is the seagull interaction. The Compton amplitude is then: 

T ~ ,  = e2(olJcIn-’J,(o) + e2(olJ,n-’J,)o) + e2(01(a2 + Ly3S)lo)gFv, 

f l = J , P ’ + P S + r ,  

(8) 

where 

J, = a,T, +2a2P, +2a3SP, +ia~,y4’+~ias~,,pLupqu. 

To get the Thomson term from this, we use P, = (M, 0, 0,O). 

(Barut and Rasmussen 1973): 
Then it can easily be verified using the commutation relations of the Lie algebra that 

[Mi,fl]=ialmri 

[Mi, rj] = iSijT0 

[M.ei, alr .e , ]=iei .  edJo-(a2+a3S)m]. 

(9) 

So we have the result 

Now 

.R]t2-’nlrj~)eiej +e’(Ol-aJjn-’ -[Mi,  i t2](o)eiej 
m 

Using the fact that fll0) = (OJn = 0, we easily obtain 

which is the Thomson term. Note that the seagull term (a2 +a3S)A,A” is vital to this 
conclusion. This interaction is intimately related to the existence of space-like solu- 
tions. When a2 and a3 are zero, the space-like states disappear and the mass spectrum 
is then decreasing with spin instead of increasing. 

To obtain the polarizabilities we have used the interaction terms (7) and formulated 
the perturbation theory in the space of group functions (Barut and Nagel 1977). This 
method is similar to the calculation of non-relativistic H atom polarizabilities in 
parabolic coordinates. The simplification is that only one or two virtual states need to 
be summed over rather than the entire discrete and continuous spectra. The results give 
(Y > p in agreement with experiment, whereas we might have expected p > a due to the 
magnetic character of the (33) resonance. The reason we obtain a smaller magnetic 
polarizability can be traced to the diamagnetic contribution from transitions to space- 
like states. 

To summarize, the space-like solutions of infinite-component field theory are 
physical and have experimental consequences. They are intimately connected with the 
compositeness of the particle. For further discussions on the relationship of infinite- 
component wave equations to field theory, see BrCzin et a1 (1970), Itzykson et a1 
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(1970), Todarov (1970), Fronsdal and Huff (197 l), Fronsdal and Lundberg (1970) and 
Barut and Baiquni (1969). 

3.3. Discussion : transitions to space -like states 

It must be emphasized that we are dealing with the state-space of a composite system, 
and not with that of a standard local quantum field theory. Moreover, this space is much 
more than the intuitive bound- and scattering-states of non-relativistic composite 
systems. In the relativistic case, we must also allow additional states of the system 
corresponding to the negative-energy states of one or more of the constituents. Are we 
therefore really justified to exclude such states a priori as does the axiom system of 
Streater and Grodsky? The basis of the axiom allowing only time-like states is the 
intuitive picture that one detects in a scattering experiment asymptotically definite 
(particle) states which are in principle localizable. The localization of relativistic 
time-like states is relatively straightforward. An irreducible representation of the 
Poincark group with M 2  > 0 when restricted to the Euclidian group gives a representa- 
tion of the latter which is induced from the spin group SU(2) (Newton and Wigner 1949, 
Wightman 1962). Hence definite localized states have the intuitive invariance property 
under spatial rotations and translations. For light-like states the localization is more 
complicated, and it becomes even more so for space-like states (Barut 1976). Even the 
detection of a system consisting of two particles, one of which is in a negative-energy 
state, clearly requires a different space-time arrangement for the detector than for a 
time-like state. 

Therefore, we cannot a priori, both on physical and mathematical grounds, exclude 
the space-like states from the picture even for asymptotic states, and there might indeed 
be transitions to space-like states which could be calculated and compared to experi- 
ments if one could detect space-like states asymptotically. 

There is, however, in relativistic quantum theory an additional principle of re- 
interpretation of negative-energy states, in two forms; either the hole theory of Dirac, 
or the second quantization formalism, as discussed in § 2. Now, if all the negative- 
energy states for a constituent are filled, then we have to conclude that the space-like 
states of the infinite-component wave equation are also completely filled. In the 
intermediate states there will be virtual transitions to space-like states if there are holes 
created in the negative-energy states of a constituent by the ejection of a particle, as in 
the example of figure 2. In the language of second quantization, we must re-interpret 
the space-like states of a bound electron, for example, as the time-like states of a bound 
positron. Thus, the problem of transition to space-like states is on the same footing as 
the transition to negative-energy states in ordinary quantum electrodynamics, and is no 
more mysterious or fearsome. 

We believe the physical interpretation given here to be important, because now the 
way is open for a formal second quantization procedure for infinite-component wave 
equations which is still an open problem. 

Finally, one should answer the question: Why do we need a relativistic theory of 
composite systems, if we have a local field theory in terms of the constituents? The main 
reason is that the local field theory does not give us immediately the non-perturbative 
bound- and resonance-states and their intrinsic properties which are the essence of the 
infinite-component wave equations. At a time when one speculates about unobserv- 
able or eternally confined constituents, such as quarks, a theory dealing with the system 
as a whole and not with the constituents, is clearly very desirable. 
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